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In this paper we consider an Ising model with nearest-neighbour interactions with spin space
[0, 1] on a Cayley tree. We present a sufficient condition under which the Ising model has
a unique splitting Gibbs measure.
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1. Introduction
The description of infinite-volume (or limiting) Gibbs measures for a given

Hamiltonian plays an essential role in the theory of equilibrium statistical mechanics.
Such measures, for a wide class of Hamiltonians, were established in the ground-
breaking work of Dobrushin [4]. However, a complete analysis of the set of
limiting Gibbs measures for a specific Hamiltonian is often a difficult problem (e.g.
[1, 2, 17–19]).

An increasing attention to models with spin values in [0,1] on Cayley trees has
been given for ten years. There are some works on Gibbs measures for models with
nearest-neighbour interactions with the set of spin values [0, 1]. The main result
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devoted to such models is the following: splitting Gibbs measures on the Cayley
tree of order k are described by solutions to a nonlinear integral equation. For
k = 1 (when the Cayley tree becomes a one-dimensional lattice Z) it is shown that
the integral equation has a unique solution, implying that there is a unique Gibbs
measure (confirming a series of well-known results; e.g. [3, 11].) For general k,
a sufficient condition is found under which a periodic splitting Gibbs measure is
unique. On the other hand, on the Cayley tree 0k of order k = 2, the existence of
phase transitions is proven, see [5, 8, 10, 12–14]. We note that all of these papers
are devoted to models with nearest-neighbour interactions.

In [9, 13] the splitting Gibbs measures for four competing interactions (external
field, nearest neighbour, second neighbours and triples of neighbours) of models on
02 are described. Also, it is proven that periodic Gibbs measure for the Hamiltonians
with four competing interactions is either translation-invariant or periodic with period
two.

In [7] there is the following open problem: the number of translation-invariant
splitting Gibbs measures for the Ising model with nearest-neighbour interactions
with spin space [0, 1] on 02 is unknown. In this paper we study this open problem
and get the following results: the uniqueness of translation-invariant splitting Gibbs
measures for the anti-ferromagnetic Ising model on 02 and if the temperature
is greater than or equal to 1

2J ln
√

5+1
2 then there is a unique translation-invariant

splitting Gibbs measure for the ferromagnetic Ising model on 02, where J ∈ R \ {0}
is the interaction term between neighbouring spins. Also, a sufficient condition of
uniqueness for the fixed points of Hammerstein operator given in [5], is investigated
and we obtain better estimations for the sufficient condition of uniqueness.

2. Preliminaries
A Cayley tree 0k = (V , L) of order k ≥ 1 is an infinite homogeneous tree, i.e.

a graph without cycles, with exactly k+ 1 edges incident to each of vertices. Here
V is the set of vertices and L that of edges (arcs). Two vertices x and y are
called nearest neighbours if there exists an edge l ∈ L connecting them, which is
denoted by l = 〈x, y〉.

Let 3 be a subset of V . A configuration on 3 is an arbitrary function
σ3 : 3→ [0, 1], with values σ(x), x ∈ 3. The set of all configurations on 3 ⊂ V
is denoted by �3 = [0, 1]3 and � := �V . Let σ̄3 be any fixed configuration on
3, i.e. σ̄3 ∈ �3. Then the following family of configurations

{σ ∈ � : σ |3 = σ̄3, 3 ⊂ V } (2.1)

is called a cylinder with base σ̄3, where σ |3 stands for the restriction of configuration
σ ∈ � to 3. If 3 is a finite set then (2.1) is called finite cylinder with base σ̄3.

Let A be the standard σ -algebra generated by finite cylinders. Now, we consider
the (formal) Hamiltonian of Ising model with nearest-neighbour interactions as

H(σ) = −J
∑
〈x,y〉∈L

σ(x)σ (y), (2.2)
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where J ∈ R \ {0} is a coupling constant and 〈x, y〉 stands for nearest neighbour
vertices and σ ∈ �.

Note that if J > 0 then (2.2) gives rise to the ferromagnetic Ising model and
if J < 0 then (2.2) gives rise to the anti-ferromagnetic Ising model.

The distance d(x, y), x, y ∈ V , on Cayley trees is the length of (i.e. the number
of edges in) the shortest path connecting x with y.
Wr stands for a ‘sphere’ and Vr for a ‘ball’ on the tree, of radius r = 1, 2, . . . ,

centered at a fixed vertex x0 (a root),

Wr = {x ∈ V : d(x, x
0) = r}, Vr = {x ∈ V : d(x, x

0) ≤ r}.

Denote
Lr = {l = 〈x, y〉 ∈ L : x, y ∈ Vr}.

A probability measure µ on (�,A) is called a Gibbs measure (with the
Hamiltonian H ) if it satisfies the Dobrushin–Lanford–Ruelle (DLR) equation (see
[4, 16]), namely for any n = 1, 2, . . . and σn ∈ �Vn ,

µ
({
σ ∈ � : σ

∣∣
Vn
= σn

})
=

∫
�

µ(dω)νVnω|Wn+1
(σn),

where νVnω|Wn+1
is the conditional Gibbs density depending on the inverse temperature

β = 1/T , T > 0,

ν
Vn
ω|Wn+1

(σn) =
1

Zn (ω)
exp

(
−βH

(
σn, ω

∣∣
Wn+1

))
.

Here and below, σn : x ∈ Vn 7→ σn(x) is a configuration in Vn and ω ∈ �Wn+1

(corresponding to σn). Also, H
(
σn, ω

∣∣
Wn+1

)
is defined as the sum H (σn) +

U
(
σn, ω

∣∣
Wn+1

)
, where

H (σn) = −J
∑
〈x,y〉∈Ln

σn(x)σn(y),

U
(
σn, ω

∣∣
Wn+1

)
= −J

∑
〈x,y〉: x∈Vn,y∈Wn+1

σn(x)ω(y).

Finally, Zn (ω) stands for the partition function in Vn, with the boundary condition
ω
∣∣
Wn+1

,

Zn (ω) =

∫
�Vn

exp
(
−βH

(
σ̃n, ω

∣∣
Wn+1

))
λVn(dσ̃n).

Here and below, λ is the Lebesgue measure on [0,1] (and can be considered as
probability measure). Let 3 ⊂ V be a finite set of cardinality |3|, then the set of
all configurations on 3 is equipped with an a priori measure λ3 introduced as the
|3|-fold power of λ.
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REMARK 1. Note that Zn (ω) is finite, since λ is a probability measure and

σ̃n 7→ exp
(
−βH

(
σ̃n, ω

∣∣
Wn+1

))
is bounded on �Vn .

Due to the nearest-neighbour character of the interaction, the Gibbs measure
possesses a natural Markov property: for given a configuration ωn+1 on Wn+1,
random configurations in Vn (i.e. ‘inside’ Wn+1) and in V \ Vn+1 (i.e. ‘outside’
Wn+1) are conditionally independent.

3. Main results
In this section we present a sufficient condition under which the Ising model has

a unique splitting Gibbs measure. This condition is much better than the sufficient
conditions of uniqueness of splitting Gibbs measures for the Ising model in [5, 9].

We use a standard definition of a translation-invariant measure (e.g. [17]). Let
h : [0, 1]×V \{x0

} → R and |h(t, x)| = |ht,x | < C, where x0 is a root of the Cayley
tree and C is a finite constant which does not depend on t . For some n ∈ N and
σn : x ∈ Vn 7→ σ(x) we consider the probability distribution µ(n) on �Vn defined by

µ(n)(σn) = Z
−1
n exp

(
−βH(σn)+

∑
x∈Wn

hσ(x),x

)
. (3.1)

Here Zn is the corresponding partition function,

Zn =

∫
�Vn

exp
(
−βH(σ̃n)+

∑
x∈Wn

hσ̃ (x),x

)
λVn(dσ̃n). (3.2)

From the above, Zn is the finite partition function.
A family of probability distributions µ(n) is called compatible if for any n ≥ 1

and σn−1 ∈ �Vn−1 it satisfies the condition∫
�Wn

µ(n)(σn−1 ∨ ωn)λWn(d(ωn)) = µ
(n−1)(σn−1). (3.3)

Here σn−1 ∨ ωn ∈ �Vn is the concatenation of σn−1 and ωn. By the Kolmogorov
extension theorem (see [15]), there exists a unique measure µ on �V such that,
for any n ∈ N and σn ∈ �Vn , µ

({
σ

∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called the splitting Gibbs measure corresponding to the
Hamiltonian (2.2) and the function x 7→ ht,x , x 6= x0.

Write x < y if the shortest path from x0 to y goes through x. Call vertex y
a direct successor of x if y > x and x, y are nearest neighbours. Denote by S(x)
the set of direct successors of x. Observe that any vertex x 6= x0 has k direct
successors and x0 has k + 1.

The following statement describes conditions on ht,x, x 6= x
0, guaranteeing com-

patibility of the corresponding distributions µ(n)(σn).



GIBBS MEASURES FOR AN ISING MODEL WITH CONTINUOUS SPIN VALUES 297

PROPOSITION 1. [12] The probability distributions µ(n)(σn), n = 1, 2, . . . , in
(3.1) are compatible iff for any x ∈ V \ {x0

} the following equation holds,

f (t, x) =
∏
y∈S(x)

∫ 1
0 exp(θtu)f (u, y)du∫ 1

0 f (u, y)du
. (3.4)

Here and below, f (t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and θ = Jβ ∈ R \ {0}.

Note that µ(n)(σn) depends on the model H , σn and β. In turn, because of H
depends on J Eq. (3.4) depends on the parameter θ . Also, from Proposition 1 it
follows that for any h : [0, 1] × V \ {x0

} → R satisfying (3.4) there exists a unique
splitting Gibbs measure µ and vice versa.

The analysis of solutions to (3.4) is not easy. Therefore, we consider solutions
in the class of translation-invariant functions f (t, x), i.e. f (t, x) = f (t), for any
x ∈ V . For such functions and k ∈ N, equation (3.4) can be written as

f (t) =

(∫ 1
0 e

θtuf (u)du∫ 1
0 f (u)du

)k
. (3.5)

Denote

(Akf )(t) =

(∫ 1
0 e

θtuf (u)du∫ 1
0 f (u)du

)k
, k ∈ N. (3.6)

For the case k = 1, the operator Ak has exactly one positive fixed point (see
[12]). That is why we consider the case k ≥ 2. Denote

Pk =
{
f ∈ C[0, 1] : 1 ≤ f (t) ≤ eθk

}
, k ≥ 2.

Note that Pk is a closed and convex subset of C[0, 1]. It is easy to check that
if f ∈ C[0, 1] is a positive solution of the equation Akf = f , then f ∈ Pk. By
virtue of article [5], the set Ak(Pk) is relatively compact in C[0, 1]. Thus, from
Schauder’s fixed point theorem one gets the following result.

PROPOSITION 2 ([5]). The operator Ak has at least one positive fixed point
in Pk.

For every k ∈ N we consider a specific type of Hammerstein integral operator
Hk acting in C[0, 1] as follows

(Hkf )(t) =

∫ 1

0
eθtuf k(u)du. (3.7)

PROPOSITION 3 ([5]). The operator Akf = f has a positive fixed point if and
only if Hk has a positive fixed point in C[0, 1].

Put
max
t∈[0,1]

f (t) = fmax, min
t∈[0,1]

f (t) = fmin.
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Now, we give a sufficient condition of uniqueness for the positive fixed point of Ak.
We introduce the usual norm of f ∈ C[0, 1] defined by ‖f ‖ = max

t∈[0,1]
|f (t)| = |f |max.

LEMMA 1. Assume that the function f ∈ C[0, 1] changes its sign on [0, 1].
Then for every c ∈ R the following inequality holds

2‖f − c‖ − ‖f ‖ ≥ |fmin| . (3.8)

Proof: By the conditions of Lemmas, there exist t1, t2 ∈ [0, 1] such that

fmin = f (t1) < 0, fmax = f (t2) > 0.

For the case c = 0, the proof of the lemma is trivial. We consider the case c > 0.
1. Let |fmin| ≥ fmax, then ‖f ‖ = |fmin| = |f (t1)|. Clearly,

2‖f − c‖ = 2 max{|f (t1)− c|, |f (t2)− c|} = 2|f (t1)− c|.

From the last equality, one gets

2‖f − c‖ − ‖f ‖ > 2|f (t1)| − ‖f ‖.

Since ‖f ‖ = |fmin|, we obtain

2‖f − c‖ − ‖f ‖ ≥ ‖f ‖ = |fmin|.

2. Let |fmin| < fmax. At first we check the case: ‖f ‖ ≥ c. Then

‖f ‖ = fmax = f (t2).

We have

2‖f − c‖ = 2 max{|f (t1)− c|, |f (t2)− c|} = 2 max{|f (t1)| + c, f (t2)− c}.

From
2 max{|f (t1)| + c, f (t2)− c} ≥ |f (t1)| + f (t2),

we obtain
2‖f − c‖ − ‖f ‖ ≥ |f (t1)| + f (t2)− ‖f ‖ = |fmin|.

Now, let us check the case ‖f ‖ < c, i.e. ‖f ‖ = f (t2). Then

2‖f − c‖ = 2 max{|f (t1)− c|, |f (t2)− c|}.

Namely,
2‖f − c‖ = 2 max{|f (t1)| + c, c − f (t2)}.

Consequently,

2‖f − c‖ − ‖f ‖ ≥ 2c + |f (t1)| − f (t2)− ‖f ‖ = 2(c − f (t2))+ |f (t1)| ≥ |fmin|.

Thus, for the case c ≥ 0 the proof of lemmas has been completed. If c < 0
then f (t)− c can be written as c1 − g(t), where g(t) = −f (t) and c1 = −c > 0.
Consequently, the inequality (3.8) is equivalent to

2‖g − c1‖ − ‖g‖ ≥ |gmin| .

This completes the proof. �
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THEOREM 1. Let θcr = 1
2 ln

√
5+1
2 . For θ ∈ (−∞, θcr ], the Ising model (2.2) has

a unique translation-invariant splitting Gibbs measure on the Cayley tree of order
two.

Proof: By Proposition 1, to prove the uniqueness of translation-invariant Gibbs
measures for the Ising model (2.2) on the Cayley tree of order two is equivalent
to showing that there exists a unique translation-invariant solution of Eq. (3.4). In
turn, from Proposition 3, finding positive solutions to this equation is equivalent
to finding positive fixed points of the operator H2. That is why it is sufficient to
show that if θ belongs to (−∞, θcr ] the operator H2 has exactly one positive fixed
point. Since A2 has at least one positive fixed point in P2 and Proposition 3, we
can conclude that H2 has at least one positive fixed point.

Now, we show that H2 has exactly one positive fixed point. Assume that the
operator H2 has two distinct positive fixed points f1 and f2. Let h(t) = f1(t)−f2(t),
then we prove that h(t) changes its sign on [0, 1]. Put

δs := δsup(f1, f2) = sup{δ ∈ [0,∞) : f1(t)− δf2(t) > 0, for all t ∈ [0, 1]}.

Then

f1(t)− δsf2(t) = H2(f1)(t)− δsH2(f2)(t) =

∫ 1

0
eθtu

(
f 2

1 (u)− δsf
2
2 (u)

)
du.

Thus,

f1(t)− δsf2(t) =

∫ 1

0
eθtu

(
f1(u)−

√
δsf2(u)

) (
f1(u)+

√
δsf2(u)

)
du. (3.9)

Suppose that δs ≥ 1, then since f1(t) 6= f2(t) for some t , we get

f1(u)−
√
δsf2(u) ≥ 0 for all u ∈ [0, 1] and

∫ 1

0
(f1(u)−

√
δsf2(u))du > 0.

Indeed, if ∫ 1

0
(f1(u)−

√
δsf2(u))du = 0

then, by definition of δs , one gets f1(u) =
√
δsf2(u) for all u ∈ [0, 1]. The last

equality contradicts to f1 and f2 being two distinct positive fixed points. Hence,
we obtain

f1(t)− δsf2(t) =

∫ 1

0
eθtu

(
f1(u)−

√
δsf2(u)

) (
f1(u)+

√
δsf2(u)

)
du > 0. (3.10)

On the other hand, by definition of δs , there is t0 ∈ [0, 1] such that f1(t0)−δsf2(t0) =
0. But, Eq. (3.9) contradicts the inequality (3.10). Hence, δs < 1, i.e. h(t) changes
its sign on [0, 1]. We can say that the maximum value of h(t) = f1(t) − f2(t)
(hmax), without loss of generality, is less than or equal to the absolute value of
hmin, i.e. ‖h‖ ≤ |hmin| (otherwise, we choose −h(t) = f2(t) − f1(t)). As a result,
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by Lemma 1, one gets the following inequality,

2‖h− c‖ − ‖h‖ ≥ |hmin| ≥ ‖h‖ ⇒ ‖h− c‖ ≥ ‖h‖, c ∈ R.

Let c = (e2θ
+ e−2θ )

∫ 1
0 h(u)du, then∥∥∥∥h(t)− (e2θ

+ e−2θ )

∫ 1

0
h(u)du

∥∥∥∥ ≥ ‖h‖. (3.11)

On the other hand,

h(t) =

∫ 1

0
eθtu(f 2

1 (u)− f
2
2 (u))du.

By Cauchy’s mean value theorem, we get

h(t) =

∫ 1

0
2eθtuξ(u)h(u)du, (3.12)

where
min{f1(t), f2(t)} ≤ ξ(t) ≤ max{f1(t), f2(t)}, t ∈ [0, 1]. (3.13)

Let the image (range) of ξ be denoted by Im(ξ). Now, we show that Im(ξ) ⊂
[e−2θ , eθ ]. If g ∈ H2(C[0, 1]), then the following inequality holds: gmin ≥ e

−θ
· ‖g‖.

Indeed, there exists a continuous function g1 such that g = H2g1. Then

gmin ≥ e
−θ
·

∫ 1

0

(
eθ ·u

)
g2

1(u)du = e
−θ
· ‖g‖,

i.e.
g ∈ B := {f ∈ C[0, 1] : fmin ≥ e

−θ
· ‖f ‖}.

From (3.13), it is sufficient to prove that any fixed point of H2 belongs to the set
[e−2θ , eθ ]. Let f be a fixed point of H2, then we have ‖f ‖ ≤ eθ‖f ‖2

⇒ e−θ ≤ ‖f ‖.
Since f ∈ B, one gets

f (t) ≥ fmin ≥ e
−θ
‖f ‖ ≥ e−2θ .

On the other hand, we estimate f (t) from above, i.e.

f (t) = (H2f )(t) ≥

∫ 1

0
f 2(u)du ≥ f 2

min ⇒ fmin ≤ 1.

From f ∈ B we obtain

f (t) ≤ fmax ≤ e
θ
· fmin ≤ e

θ .

Hence
Im(f ) ⊂ [e−2θ , eθ ] ⇒ Im(ξ) ⊂ [e−2θ , eθ ].

Consequently, for all t, u ∈ [0, 1] we have eθtuξ(u) ∈ [e−2θ , e2θ
]. Thus, the following

inequality holds, ∣∣2eθtuξ(u)− (e−2θ
+ e2θ )

∣∣ ≤ e2θ
− e−2θ .
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We multiply both sides by |h(u)|,∣∣2eθtuξ(u)h(u)− (e−2θ
+ e2θ )h(u)

∣∣ ≤ (e2θ
− e−2θ )|h(u)|.

After integrating both sides of the last inequality, we have∣∣∣∣h(t)− (e−2θ
+ e2θ )

∫ 1

0
h(u)du

∣∣∣∣ < (e2θ
− e−2θ )‖h‖.

From (3.11), we get the inequality

‖h‖ ≤

∥∥∥∥h(t)− (e−2θ
+ e2θ )

∫ 1

0
h(u)du

∥∥∥∥ < (e2θ
− e−2θ )‖h‖.

If θ satisfies the condition e2θ
− e−2θ

≤ 1 then the operator H2 has exactly one
fixed point. The last inequality is equivalent to the condition θ ∈ (−∞, θcr]. �

From the above, it is clear that θ = Jβ and β = 1/T , where T > 0 is the
temperature. If θ < 0 then J < 0 and if θ > 0 then J > 0. Taking into account
these factors, one gets the following:

COROLLARY 1. For the Ising model with spin values in [0,1] on the Cayley
tree of order two the following statements are true:

(1) If the temperature T satisfies the condition T ≥ (1/2J ) ln (
√

5+ 1/2) then
there is a unique translation invariant splitting Gibbs measure for the
ferromagnetic Ising model.

(2) There is a unique translation invariant splitting Gibbs measure for the
anti-ferromagnetic Ising model.

Let us present the following open problem in [7].

Open problem. The number of translation invariant Gibbs measures for the Ising
model (2.2) on 02 is unknown.

However, we give the sufficient condition of uniqueness of translation invariant
Gibbs measures for the Ising model, for any θ > θcr finding the number of translation
invariant Gibbs measures for the ferromagnetic Ising model is still open.
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