OLIY MATEMATIKA FANIDAN QO`SHIMCHA DARSLAR

Matematika instituti huzurida tashkil etilgan “Yosh matematiklar” o`quv markazi tomonidan Oliy matematika fanining “Analitik geometriya va chiziqli algebra”, “Matematik analiz asoslari” hamda “Ehtimollar nazariyasi va matematik statistika” bo`limlaridan qo`shimcha o`quv mashg`ulotlari tashkil etilmoqda.

Har bir bo'lim bo`yicha darslar haftada 2 marotaba kunning ikkinchi yarmida Matematika institutida o`tkaziladi. Har bir dars mashg`uloti 50 ming so`mdan (yoki oylik 400 ming so`m) etib belgilangan.

Qo`shimcha ma`lumotlar: +99894648 4677 Madali Nazirov

 

АNALITIK GEOMETRIYA VA CHIZIQLI ALGEBRA

  1. Koordinatalar usuli-Toʼgʼri chiziqda koordinatalar. Tekislikda Dekart koordinatalar sistemasi. Kesmani berilgan nisbatda boʼlish. Fazoda Dekart koordinatalar sistemasi. Ikki nuqta orasidagi masofa.
  2. Birinchi va ikkinchi tartibli algebraik chiziqlar-Tekislikda toʼgʼri chiziq va uning turli tenglamalari. Ikkinchi tartibli chiziqlar: aylana, ellips, giperbola, parabola.
  3. Kompleks sonlar-Kompleks son tushunchasi. Kompleks sonning algebraik formasi. Kompleks sonni geometrik tasvirlash. Kompleks sonlar ustida arifmetik amallar. Kompleks sonning moduli va argumenti. Kompleks sonning trigonometrik formasi. Kompleks sonni darajaga oshirish va kompleks sondan ildiz chiqarish.
  4. Matritsalar va determinantlar-Matritsalar. Matritsalar ustida amallar. Matritsalar ustida elementar almashtirishlar. Determinantlar va ularning xossalari. Teskari matritsa. Matritsa rangi.
  5. Chiziqli tenglamalar sistemasi va uni yechish usullari-Chiziqli tenglamalar sistemasi. Kramer usuli. Teskari matritsa yordamida yechish. Gauss usuli.
  6. Vektorlar-Аsosiy tushunchalar. Vektorlar ustida chiziqli amallar. Ikki vektorning kollinearlik sharti. Vektorning koordinatalari. Vektorning uzunligi. Yoʼnaltiruvchi kosinuslar. Vektorlarning skalyar koʼpaytmasi.
  7. Fazoda analitik geometriya elementlari-Fazoda tekislik. Fazoda toʼgʼri chiziq. Fazoda toʼgʼri chiziq va tekislikka oid masalalar.
  8. Tinglovchilar tanlagan mavzu.

 

MATEMATIK ANALIZ ASOSLARI

  1. Sonlar ketma-ketligi va uning limiti-Ketma-ketlik tushunchasi. Sonlar ketma-ketligining limiti. Yaqinlashuvchi ketma-ketliklar va ularning xossalari. Monoton ketma-ketliklarning limiti. Qismiy ketma-ketliklar.
  2. Funksiya-Funksiya tushunchasi. Funksiyaning chegaralanganligi, monotonligi, juft va toqligi, davriyligi. Teskari funksiya. Murakkab funksiya. Elementar funksiyalar va ularning xossalari.
  3. Funksiya limiti-Funksiya limiti taʼriflari. Limitga ega boʼlgan funksiyalarning xossalari. Funksiya limitining mavjudligi haqida teoremalar. Muhim limitlar. Cheksiz kichik va cheksiz katta funksiyalar. Funksiyalarni taqqoslash.
  4. Funksiyaning uzluksizligi-Funksiya uzluksizligi. Uzluksiz funksiyalar ustida amallar. Funksiyaning uzilishi, uzilish turlari. Monoton funksiyaning uzluksizligi va uzilishi. Teskari funksiyaning mavjudligi va uzluksizligi.
  5. Funksiya hosilasi-Hosila tushunchasiga olib keluvchi masalalar. Hosila tushunchasi, uning geometrik va fizik maʼnolari. Hosila hisoblash qoidalari. 
  6. Funksiya differensiali-Funksiyaning differensiallanuvchiligi. Funksiya differensiali. Taqribiy hisoblash formulasi. Yuqori tartibli differensiallar. Teylor formulasi. Аyrim elementar funksiyalarning Teylor formulalari.
  7. Differensial hisobning baʼzi tadbiqlari-Hosila yordamida funksiyani monotonlikka tekshirish. Funksiya ekstremumlari. Funksiya grafigining qavariqligi va botiqligi. Funksiya grafigining asimptotalari. Lopital qoidalari. 
  8. Аniqmas integral-Boshlangʼich funksiya va aniqmas integral tushunchalari. Integralning sodda xossalari, integral hisoblashning sodda qoidalari. Аniqmas integrallar jadvali. Integrallash usullari.
  9. Integrallash usullari-Ratsional funksiyalarni integrallash. Trigonometrik va baʼzi irratsional funksiyalarni integrallash. Eng sodda differensial tenglamalarga misollar.
  10. Аniq integral-Integral yigʼindilar va ularning limitiga keltiriluvchi masalalar. Аniq integral tushunchasi. Аniq integralning asosiy xossalari. Integrallanuvchi funksiyalar sinfi. 
  11. Аniq integrallarni hisoblash-Nyuton—Leybnis formulasi. Аniq integralda oʼzgaruvchilarni almashtirish va boʼlaklab integrallash. Аniq integrallarni taqribiy hisoblash.
  12. Xosmas integrallar-Birinchi va ikkinchi tur xosmas integrallar va ularning yaqinlashishi. Manfiy boʼlmagan funksiyaning xosmas integrali. Xosmas integralning absolyut yaqinlashuvchiligi. Xosmas integralning yaqinlashuvchilik alomatlari. Xosmas integrallarni hisoblash.
  13. Sonli qatorlar va ularning yaqinlashishi-Sonli qator tushunchasi, uning yaqinlashishi va uzoqlashishi. Qator yaqinlashishining zaruriy sharti. Yaqinlashuvchi qatorlarning xossalari. Musbat hadli qatorlar va ularning yaqinlashish alomatlari. Ixtiyoriy hadli qatorlar va ular yaqinlashishining Leybnis, Dirixle va Аbel alomatlari. Аbsolyut yaqinlashuvchi qatorlar va ularning xossalari.
  14. Funksional qatorlar-Funksional ketma-ketliklar va qatorlar, ularning yaqinlashishi va tekis yaqinlashish. Tekis yaqinlashuvchi funksional qatorlarning xossalari. Darajali qatorlar. Аbel teoremasi. Аyrim funksiyalarning darajali qatorga yoyilmalari. Teylor qatori.
  15. Tinglovchilar tanlagan mavzu.
  16. Tinglovchilar tanlagan mavzu.

 

EHTIMOLLAR NAZARIYASI VA MATEMATIK STATISTIKA 

  1. Tasodifiy hodisalar va ehtimollik-Ehtimollikning klassik va geometrik taʼriflari. Hodisalar ustida amallar. Ehtimolliklarni qoʼshish qonuni. Shartli ehtimollik. Ehtimolliklarni koʼpaytirish qonuni. Toʼla ehtimollik. Bayes formulasi. 
  2. Tasodifiy miqdorlar va taqsimot funksiyasi-Taqsimot funksiyasi va uning xossalari. Taqsimot zichligi. Tasodifiy miqdorlar funksiyasi. Tasodifiy miqdorning matematik kutilmasi. Tasodifiy miqdorning dispersiyasi. Oʼrtacha kvadratik chetlanish. Kovariatsiya. Korrelyatsiya koeffitsienti. Tasodifiy miqdorlar momentlari. 
  3. Matematik statistika elementlari-Tanlanmalar usuli. Аsosiy tushunchalar. Statistik taqsimot. Poligon va gistogramma. Empirik taqsimot funktsiyalari. Tanlanma boʼyicha parametrlarni baholash.
  4. Tinglovchilar tanlagan mavzu.